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Abstract. Magnetic fields in perfectly conducting chaotic flows are known to exhibit an
arbitrarily fine-scaled alternation in the orientation of these fields. As a result, there exists
a degree of cancellation when integrating the field in any open set. We show that when this
cancellation is enough to keep bounded some generalized variation of the field, it behaves rather
regularly asymptotically in time, despite the fact that it tends to concentrate in a fractal set. The
magnetic field, divided by the total magnetic moment, converges in a weak sense, and several
means of its vector potential converge pointwise.

1. Introduction

Kinematic dynamo theory addresses the problem of the evolution of the magnetic field
generated by the motions of a conducting flow without taking into account the effect of
this field upon the fluid velocity through the Lorentz force. As such it is adequate for the
study of small fields, or the initial stages of a rapidly evolving seed magnetic field, such as
those occurring in the so-called fast dynamos, which have been extensively studied [1]. It is
known that fast dynamos are only possible in chaotic flows [2], which makes doubly relevant
the work of Ott and co-workers [3–5] for the comprehension of the magnetohydrodynamics
of these flows. These authors, as well as many others, use maps to visualize the evolution
of the magnetic field under the induction equation

∂B

∂t
= curl(u×B − η curlB). (1)

It is known that when the magnetic diffusivityη is taken as zero, the field is frozen in the
fluid, i.e. it is transported by it as material points. In this case the map consists simply
of transport by the fluid flow. When diffusivity exists, a two-step map is used: first
translation by the flow, and then static diffusion to account for the effects of resistivity.
That this procedure adequately mimics the real kinematic evolution of the field is proved,
for instance, in [2]. Hence, this map provides an approximate solution of the induction
equation,which is Ott’s procedure: field evolution is a consequence of the geometry of the
fluid motion. In the case of a perfectly conducting fluid, the magnetic field tends to be
concentrated in a zero-volume fractal set [3, 4]: Thus,B(t)/‖B(t)‖∞ tends to zero when
t →∞ in any integral norm, where‖B(t)‖∞ stands for the supremum norm. What remains
to be seen is ifB itself has a limit in some sense whent →∞ or its behaviour in time is
too irregular to prescribe any stability. We intend showing that for any sequencetn →∞,
there exists a subsequence(tjn ) such thatB(tjn ), divided by the total magnetic moment
| ∫∫

V
B(tjn ) dV |, has a limit in a certain weak sense. Moreover, this limit is rather regular
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as a space function. Hence, it may occur that the magnetic moment tends to infinity (as it
happens in fast dynamos), to tend to zero or not to have a limit, but the meanB/| ∫∫

V
B dV |

varies within a set of limit states which are not too irregular.
It is known [4, 5] that the field tends to point in opposite directions in very close parts

of the domainV . To evaluate the oscillation of the field, Du and Ott [4, 5] introduced the
concept of cancellation exponent, which is the exponentκ such that when dividingV into
boxesV1, . . . , VN of edge sizeε, we have

N∑
i=1

∣∣∣∣ ∫ ∫
Vi

B dV

∣∣∣∣ = ε−3κf (ε)

∣∣∣∣ ∫ ∫
V

B dV

∣∣∣∣ (2)

with f (ε) → 1 asε → 0. (The cancellation exponent is 3κ in Du and Ott’s notation.)
They presented a formula for the fast dynamo growth [5] as a function of the cancellation
and the Lyapunov exponents of the flow and considered the case with positive magnetic
diffusion as a smoothing of the ideal field in the scale of the square root of the diffusion,
so that the previous results remain valid for adequate intervals of time and lengthscale.

The dynamo growth formula may need some refinements [1]; for certain flows it does
not work [6]. Also, the diffusive field is not a simple smoothing of the ideal one [7]. Even
the existence of the cancellation exponent is difficult to prove. The numerical evidence for
some classical models such as the baker’s map and the stretch–fold–shear dynamo points to
a definite value, and assuming that the exponent exists this value may be found theoretically
[4], but so far there is no rigorous existence proof for any model.

Du and Ott [4] argued that the fraction of the total magnetic flux within the boxVi
becomes a constant in time, to which it should be added that when one dividesV into N
identical parts, the sum

∑ | ∫∫
Vi
B dV | must behave precisely as a powerNκ of N , i.e.

N∑
i=1

vol(Vi)
κ

∣∣∣∣ ∫ ∫
Vi

B dV

∣∣∣∣/∣∣∣∣ ∫ ∫
V

B dV

∣∣∣∣ (3)

tends to a positive constant asN →∞. This demands a very precise and uniform behaviour
of the field cancellation. We will weaken this hypothesis in the sense of admitting only that
this amount must remain bounded for all time. However, if in the limit the cancellation
works equally well in finer scales, the value of the integrals| ∫∫

Vi
B dV | should not differ

greatly despite the size ofVi ; hence their sum should be bounded byNκ even for a non-
uniform decomposition ofV . We will take parallel slabs in any fixed direction given by a
unit vectorwr. The above hypothesis may be written as follows.

Let� be the unit sphere inR3, (a, b) be an interval large enough so that in any direction
w ∈ �, V is contained in{x : x ·w ∈ (a, b)}. Let a = r0 < r1 < · · · < rN+1 = b be a
partition of (a, b), w be a fixed unit vector,Vi = {x : x ·w ∈ (ri, ri+1]}, and let8(t) be
the total magnetic moment| ∫∫

V
B(t) dV |.

We will say thatB possesses uniform cancellation of exponentκ if for any probability
measureP in (a, b),

N∑
i=1

P((ri, ri+1])κ
∣∣∣∣ ∫ ∫

Vi

B(t) dV

∣∣∣∣ 6 constant·8(t) (4)

uniformly for all w, t and all partitions.
To simplify the arguments, we will assume the fieldB(0) at t = 0 to vanish at the

boundary∂V , and the flow not to surpass its boundaries; since the field lines are transported
as material points (the frozen field theorem),B(t) always vanishes at∂V . Also we take the
velocityu smooth enough (which does not preclude its chaotic character). Hence, ifB(0) is
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smooth, so isB(t) for all t , although its derivatives will tend to grow as the field becomes
more and more fractal-like. We will say that the field within a chaotic flow possesses
uniform cancellation of exponentκ if the above inequality holds for some constantκ < 1.

2. Uniform cancellation and generalized variation

Lemma 2.1.A field B possesses uniform cancellation of exponentκ if and only if there
exists a constantK such that for every unit vectorw, for any partition(ri)

N+1
i=1 of (a, b)

and forVi = {wr ∈ V : r ∈ (ri, ri+1]}, we have
N∑
i=1

∣∣∣∣ ∫ ∫
Vi

B(t) dV

∣∣∣∣1/(1−κ) 6 K8(t)1/(1−κ) (5)

for all time.

Proof. Since we may take any probability measureP , we have that for every(λi)
N+1
i=1 ,∑

i λi = 1, λi > 0,
∑

i λ
κ
i mi 6 constant. Now the 1/(1− κ)-norm of (mi) is the maximum

of
∑

i µimi , when the 1/κ-norm of (µi) is less than 1. Sincemi > 0, this maximum is
reached forµi > 0. Thus, it is enough to takeλi = µ1/κ

i . The reverse implication is a trivial
consequence of Holder’s inequality. Hereafter we will denote byp the value 1/(1−κ) > 1.

Let us remember that for any solenoidal fieldB within the Sobolev classHm(R3) there
exists a unique solenoidal fieldA (called a vector potential) such that curlA = B and
A ∈ Hm+1(R3) (see for example [8]). Now our magnetic field may be extended smoothly
to R3 by 0, since it vanishes at∂V . Thus there exists a solenoidal vector potential decaying
smoothly to zero at infinite (although not necessarily confined toV ). In the future we will
deal exclusively with this fieldA, and we will take for granted the bound in lemma 2.1.�

Theorem 2.2.Let w ∈ �, Sj the planew · x = rj . Then there exists a constantM such
that for every componentAl of A, for every partition(rj ) of (a, b) and for all time

N∑
j=0

∣∣∣∣ ∫
Sj+1

Al(t) dσ −
∫
Sj

Al(t) dσ

∣∣∣∣p 6 M8(t)p. (6)

Proof. Assume for simplicity thatw is one of the coordinate vectorsek. Then div(A×ei ) =
curlA · ei = Bi . By the divergence theorem,∫

Sj+1

(A× ei ) · ek dσ −
∫
Sj

(A× ei ) · ek dσ =
∫ ∫

Vj

Bi dV. (7)

For i 6= k, ei × ek = ±el (the remaining coordinate vector). Thus∣∣∣∣ ∫
Sj+1

Al dσ −
∫
Sj

Al dσ

∣∣∣∣ = ∣∣∣∣ ∫ ∫
Vj

Bi dV

∣∣∣∣. (8)

In this way we obtain all the componentsl 6= k. The corresponding integral forAk is zero
because divA is zero. Anyway∣∣∣∣ ∫

Sj+1

A dσ −
∫
Sj

A dσ

∣∣∣∣ 6 ∣∣∣∣ ∫ ∫
Vj

B dV

∣∣∣∣. (9)

The consequence follows from our hypothesis thatB possesses uniform cancellation.
Hereafter we will denote byβ the normalized fieldB/8, and byα its vector potential
A/8.
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Recall that the integral of a functionf in the planew ·x = r with the area measure dσ
is called the Radon transformRf (w, r) (the notation is not standard, but more convenient
for our purposes). For facts concerning the Radon transform we will follow [9].Rf is in
fact defined in the projective spaceP3; alternatively we may view functions inP3 as even
functions in�×R (since the planew ·x = r is the same as the plane−w ·x = −r). Our
previous result obviously implies the following. �

Corollary 2.3. There exists a constantM such that for anyw ∈ �, for every partition(rj )
of (a, b) and for all time

N∑
j=0

|Rα(w, rj+1)− Rα(w, rj )|p 6 M. (10)

Now there is a space formed precisely by the functions satisfying this bound. Its definition
goes back to Wiener [10]; they were later studied by Young [11] whose results on Stieltjes
integration will be used later, and generalized by Orlicz and co-workers [12, 13]. A recent
unification of many of these results may be found in [14]. Functions satisfying this bound are
called functions of boundedp-variation. The supremum of(

∑N
j=0 |f (rj+1) − f (rj )|p)1/p

when taking all possible partitions is a norm in this Banach spaceVp(a, b). A closed
subspace of this is formed by all continuous functions of boundedp-variation,CVp(a, b),
which includes the space of functions satisfying a Holder condition of order 1/p, C1/p(a, b).
A deep result is that if(1/p) + (1/q) > 1, for anyf ∈ CVp(a, b), g ∈ Vq(a, b) (or vice
versa), the integral

∫ b
a
f (s) dg(s) exists in the sense of Riemann–Stieltjes, and∣∣∣∣ ∫ b

a

f (s) dg(s)

∣∣∣∣ 6 M‖f ‖Vp‖g‖Vq . (11)

All this may be vastly generalized, but to our purposes it is enough to note that for every
componentαi , Rαi ∈ L∞(�, CVp(a, b)). Hereafter we will denote by d|w| the Lebesgue
measure on the unit sphere�.

Corollary 2.4. There exists a constantM such that for any

F ∈ L1(�,Vq(a, b))
with (1/p)+ (1/q) > 1, and for all time∣∣∣∣ ∫ ∫

�×R
FRB d|w| dr

∣∣∣∣ 6 ‖F‖L1(�,Vq (a,b))‖RA‖L∞(�,CVp(a,b)). (12)

Proof. It is enough to realize that for any componentBm of B transversal tow,
RBm dr = ±dRAn for some component ofA. For instance, forw = el , RBi dr = ±dRAk,
whenei × ek = ±el . The component ofB in thew-direction has zero Radon transform
by Stokes’ theorem.

This result is optimal in the sense that for(1/p) + (1/q) 6 1, there exist functions
f ∈ CVp(a, b), g ∈ CVq(a, b) such that

∫ b
a
f (s) dg(s) is divergent. These functions may

even be taken within the Holder spacesC1/p(a, b), C1/q(a, b) [13]. We will denote byR∗
the dual Radon transform (see [9]). Then we have the following. �

Corollary 2.5. WhenF belongs to a bounded set inL1(�,Vq(a, b)), with (1/p)+ (1/q) >
1, the value

∫∫
R3(R∗F)β dV remains bounded for all time.
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Proof. This value coincides, except by a multiplicative constant, with the integral in the
previous corollary by the main duality theorem of Radon transforms (see [9]).

Thus we must analyse which kind of functions are the dual Radon transforms of
functions inL1(�,Vq(a, b)). Although they do not coincide with any classical space,
they contain some well known ones which will give us our theorems on the boundedness
of the field. �

3. Convergence of the magnetic field

Theorem 3.1.If B possesses uniform cancellation,β is bounded for all time in theH−2(V )-
norm and the vector potentialα bounded in theH−1(V )-norm.

Proof. We must show thatH 2(V ) is contained inR∗L1(�,Vq(a, b)), that isR−1
∗ H

2(V ) ⊂
L1(�,Vq(a, b)). Let us see first thatRL2(V ) ⊂ L2(�,H 1(R)). This follows from the
fact that the three-dimensional Fourier transformF3f (ws) is the one-dimensional Fourier
transform with respect tos of the Radon transform (see [9]):F3f (ws) = F1Rf (w, s).
Thus, by the Plancherel theorem,∫
�

d|w|
∫
R

∣∣∣∣∂Rf∂r
∣∣∣∣2 dr =

∫
�

d|w|
∫
R

∣∣∣∣F1
∂Rf

∂r
(w, s)

∣∣∣∣2 ds

=
∫
�

d|w|
∫
R
|sF1Rf (w, s)|2 ds =

∫
�

d|w|
∫
R
|sF3f (ws)|2 ds

= c
∫ ∫

R3
|F3f (x)|2 dx = c

∫ ∫
R3
|f (x)|2 dx. (13)

The c accounts for the constant in passing from spherical to Cartesian coordinates. Hence
the L2(R3)-norm of f and theL2(� × R) of (∂Rf )/(∂r) are equivalent. SinceV is
bounded andRf (w,−) vanishes outside(a, b), theL2-norm of (∂Rf )/(∂r) is equivalent
to theH 1-norm ofRf .

It is known (see again [9]) thatR−1
∗ = γR1, where 1 stands for the Laplace

operator andγ is a constant. Since1 takesH 2(V ) to L2(V ) continuously,R−1
∗ takes

H 2(V ) to L2(�,H 1(R)). In fact Rf vanishes outside(a, b). Any function within
H 1(a, b)) has a square-integrable derivative, hence integrable and therefore has bounded
variation. A fortiori it belongs toCVq(a, b), for any q > 1. Since� has finite measure,
L2(�, CVq(a, b)) ⊂ L1(�, CVq(a, b)). All the immersions are continuous. Hence∣∣∣∣ ∫ ∫

V

G · β dV

∣∣∣∣ 6 M‖G‖H 2(V )3 (14)

which means thatB(t) : t > 0 is bounded inH 2(V ). The result forA follows from the
inequality

‖α‖H−1(R3)3 6 ‖β‖H−2(R3)3 (15)

which is a consequence of the fact mentioned above [8] that curl−1 takes continuously
H 1(R3)3 into H 2(R3)3, by considering the adjoint operator.

This theorem is emphatically not the best possible. What we must demand forG is
merely thatR−1

∗ G = γ (∂2/∂r2)RG (which is another expression of the inverse) belongs to
L1(�, CVq(a, b)3). Still, it will provide a partial answer to the question about the existence
of a limit. �
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Corollary 3.2. For every sequencet1, t2, . . . tn →∞, there exists a subsequence(tjn ) such
thatβ(tjn ) converges in the weak topologyσ(H−2(V ),H 2(V )).

Proof. It is a simple consequence of Alaoglu’s theorem on the weak compactness of the
unit ball of the dual space, and the fact that sinceH 2(V ) is separable, this weak topology
in the ball is metrizable.

Obviously the vector potentialsα converge in theσ(H−1(V ),H 1(V ))-topology, but
still this is not very intuitive; for instance, we cannot guarantee pointwise convergence.
This, however, is true for the means ofα. �

Theorem 3.3.For every Borel measureµ in � and every sequencet1, t2, . . . tn→∞, there
exists a subsequence(tjn ) such that∫

�

Rα(w, r, tjn ) dµ(w)

converges at every point of(a, b).

Proof. It is a consequence of Helly’s selection theorem as applied to the spaceVp(a, b)
(see [12]). The functions

r →
∫
�

Rα(w, tn) dµ(w)

form a bounded set inVp(a, b), sinceµ(�) < ∞; hence, there exists a subsequence
pointwise convergent to a function ofVp(a, b).

If we take asµ the Dirac measure centred at a point, we would obtain pointwise
convergence ofRα(w0, tjn ); by taking an atomic measure, we could obtain convergence of
Rα in any countable subset of�. This result may be generalized as follows. Since functions
in Vp(a, b) are bounded, the product of two functions inVp lies in Vp. Hence, we may
obtain in the same fashion a convergent subsequence of

∫
�
G(w, r, tn)Rα(w, r, tjn ) dµ(w)

for all r, providedG ∈ L1(�, CVp(a, b),dµ)3. Note, however, that this does not imply
weak convergence in any sense ofRα(tjn ), since the subsequence depends ong andµ.
Anyway the integral ofA in any plane has limits whent →∞.

Finally, we will see that any of these limits is rather regular; they are the pointwise
limit of their Fourier series at every point. We shall use the notion of(C, r) convergence,
whose meaning may be found in [15]. �

Theorem 3.4.Let F (x) be the limit of some subsequence of∫
�

G(w, r, tn)Rα(w, r, tjn ) dµ(w).

Then the Fourier series ofF is (C, s) bounded for anys ∈ [−1, 0) such that−s < (1/p),
and(C, r) summable toF (x) at every point for anyr > s. In particular, the Fourier series
of F converges toF at every point.

Proof. Let ((an, bn))n be any sequence of disjoint intervals in(a, b). Then∑
n

|F (bn)− F (an)|
ns+1

6
(∑

n

|F (bn)− F (an)|p
)1/p(∑

n

1

np
′(s+1)

)1/p′

(16)
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where p′ stands for the conjugate ofp. The first factor is always bounded because
F ∈ Vp(a, b)3, and the second is bounded ifp′(s+1) > 1, which amounts to−s < (1/p).
HenceF belongs to the space of the so-called functions of(ns+1)-bounded variation, whose
Fourier series satisfy the above condition (see [16]). In particular this happens fors = 0
(functions of harmonic bounded variation [17]) whose Fourier series converge at every
point.

As an additional result, it is also true thatF may have only simple discontinuities
[16]. �

4. Conclusions

We have shown that when a magnetic field evolves under the ideal induction equation for
a fixed fluid velocity while keeping bounded a certain variation, the mean magnetic field
β and its vector potentialα have sequential limits whent → ∞ for a weak topology.
This weak limit does not need to be unique, so that we cannot really speak of a limit field
β(∞). However, it offers some information on the asymptotic evolution of the field. Since
| ∫∫

V
β(t) dV | = 1, β(∞) has integral 1 and cannot be 0. Hence, if the magnetic moment

tends to zero, the field also vanishes in the limit: one could think that the ups and downs
of the field may make for a small moment, but this does not happen unless the field itself
decreases. If the magnetic moment remains bounded, the field has limits whent →∞ in
theH−2 sense, whereas if the moment tends to infinity as it happens in the classical fast
dynamo models, so does the field at every open subset ofV , and at most at the total moment
rate. It cannot happen that certain portions of the domain make for a large moment while
others remain below the mean. Also, several spatial means ofα tend pointwise to their
corresponding limits, and those are not too irregular. This shows how when well balanced
they tend to be the ups and downs of the field.
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