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Abstract. Magnetic fields in perfectly conducting chaotic flows are known to exhibit an
arbitrarily fine-scaled alternation in the orientation of these fields. As a result, there exists
a degree of cancellation when integrating the field in any open set. We show that when this
cancellation is enough to keep bounded some generalized variation of the field, it behaves rather
regularly asymptotically in time, despite the fact that it tends to concentrate in a fractal set. The
magnetic field, divided by the total magnetic moment, converges in a weak sense, and several
means of its vector potential converge pointwise.

1. Introduction

Kinematic dynamo theory addresses the problem of the evolution of the magnetic field
generated by the motions of a conducting flow without taking into account the effect of
this field upon the fluid velocity through the Lorentz force. As such it is adequate for the
study of small fields, or the initial stages of a rapidly evolving seed magnetic field, such as
those occurring in the so-called fast dynamos, which have been extensively studied [1]. Itis
known that fast dynamos are only possible in chaotic flows [2], which makes doubly relevant
the work of Ott and co-workers [3-5] for the comprehension of the magnetohydrodynamics
of these flows. These authors, as well as many others, use maps to visualize the evolution
of the magnetic field under the induction equation

oB
Y curl(u x B — ncurl B). 1)

It is known that when the magnetic diffusivity is taken as zero, the field is frozen in the
fluid, i.e. it is transported by it as material points. In this case the map consists simply
of transport by the fluid flow. When diffusivity exists, a two-step map is used: first
translation by the flow, and then static diffusion to account for the effects of resistivity.
That this procedure adequately mimics the real kinematic evolution of the field is proved,
for instance, in [2]. Hence, this map provides an approximate solution of the induction
equation,which is Ott's procedure: field evolution is a consequence of the geometry of the
fluid motion. In the case of a perfectly conducting fluid, the magnetic field tends to be
concentrated in a zero-volume fractal set [3, 4]: ThBs;)/| B(t)| - tends to zero when

t — oo in any integral norm, whergB(t)||» Stands for the supremum norm. What remains
to be seen is ifB itself has a limit in some sense when- oo or its behaviour in time is

too irregular to prescribe any stability. We intend showing that for any sequgneeco,

there exists a subsequengg) such thatB(z;,), divided by the total magnetic moment

| [, B(t;,)dV|, has a limit in a certain weak sense. Moreover, this limit is rather regular
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as a space function. Hence, it may occur that the magnetic moment tends to infinity (as it
happens in fast dynamos), to tend to zero or not to have a limit, but theﬁﬂaﬁv BdV|
varies within a set of limit states which are not too irregular.

It is known [4, 5] that the field tends to point in opposite directions in very close parts
of the domainV. To evaluate the oscillation of the field, Du and Ott [4, 5] introduced the
concept of cancellation exponent, which is the exporestich that when dividing/ into

boxesVy, ..., Vy of edge sizes, we have
/ / de‘ 2)
|4

N
Z ff BdV‘:sg’Kf(e)
i=1 Vi

with f(¢) — 1 ase — 0. (The cancellation exponent i 3n Du and Ott’'s notation.)
They presented a formula for the fast dynamo growth [5] as a function of the cancellation
and the Lyapunov exponents of the flow and considered the case with positive magnetic
diffusion as a smoothing of the ideal field in the scale of the square root of the diffusion,
so that the previous results remain valid for adequate intervals of time and lengthscale.

The dynamo growth formula may need some refinements [1]; for certain flows it does
not work [6]. Also, the diffusive field is not a simple smoothing of the ideal one [7]. Even
the existence of the cancellation exponent is difficult to prove. The numerical evidence for
some classical models such as the baker's map and the stretch—fold—shear dynamo points to
a definite value, and assuming that the exponent exists this value may be found theoretically
[4], but so far there is no rigorous existence proof for any model.

Du and Ott [4] argued that the fraction of the total magnetic flux within the Box
becomes a constant in time, to which it should be added that when one dWidgs N
identical parts, the su_ | ffw B dV| must behave precisely as a poweéf of N, i.e.

gvol(Vi)" //%de’/‘ffvjadv‘ .

tends to a positive constant &— oo. This demands a very precise and uniform behaviour
of the field cancellation. We will weaken this hypothesis in the sense of admitting only that
this amount must remain bounded for all time. However, if in the limit the cancellation
works equally well in finer scales, the value of the integqufﬁ,i BdV| should not differ
greatly despite the size df;; hence their sum should be bounded &§ even for a non-
uniform decomposition o¥/. We will take parallel slabs in any fixed direction given by a
unit vectorwr. The above hypothesis may be written as follows.

Let  be the unit sphere iR3, (a, b) be an interval large enough so that in any direction
w e Q, Viscontained infx : x-w € (a,b)}. Leta=rg<ry<---<ryy1=>bbea
partition of (a, b), w be a fixed unit vectory; = {x : © - w € (r;, r;31]}, and letd(z) be
the total magnetic moment/,, B(r) dV|.

We will say thatB possesses uniform cancellation of exponeiitfor any probability
measureP in (a, b),

N

> P((risripa)" // B(t)dv‘ < constant ®(t) (4)
i=1 Vi

uniformly for all w, ¢ and all partitions.

To simplify the arguments, we will assume the fidg(0) at+ = 0 to vanish at the
boundaryd V, and the flow not to surpass its boundaries; since the field lines are transported
as material points (the frozen field theoreB)r) always vanishes &dtV. Also we take the
velocity u smooth enough (which does not preclude its chaotic character). He@€))ifis
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smooth, so isB(t) for all ¢, although its derivatives will tend to grow as the field becomes
more and more fractal-like. We will say that the field within a chaotic flow possesses
uniform cancellation of exponent if the above inequality holds for some constant 1.

2. Uniform cancellation and generalized variation

Lemma 2.1A field B possesses uniform cancellation of exponerif and only if there
exists a constank such that for every unit vectaw, for any partition(ri)f": *il of (a, b)
and forV; = {wr € V : r € (r;, r;11]}, we have
1/(1—«)

< KoYt (5)

N

> f B(t)dv
-1 Vi

for all time.

Proof. Since we may take any probability measupe we have that for everya;)¥*,

Yiki=1,4>0,); Am; < constant. Now the A1 — «)-norm of (m;) is the maximum
of Y, wim;, when the Yx-norm of (u;) is less than 1. Since; > 0, this maximum is
reached fo; > 0. Thus, it is enough to take = ul/” The reverse implication is a trivial
consequence of Holder’s inequality. Hereafter we will denote ltlge value ¥(1—«) > 1.

Let us remember that for any solenoidal fid&within the Sobolev clas&l” (R®) there
exists a unique solenoidal field (called a vector potential) such that c&l= B and
A € H"(R?) (see for example [8]). Now our magnetic field may be extended smoothly
to R® by 0, since it vanishes &tV. Thus there exists a solenoidal vector potential decaying
smoothly to zero at infinite (although not necessarily confinetf toln the future we will
deal exclusively with this fieldd, and we will take for granted the bound in lemma Z1.

Theorem 2.2Let w € Q, §; the planew - = r;. Then there exists a constamt such
that for every componem, of A, for every partition(r;) of (a, b) and for all time

Z f Al(t)da—/Al(t)do
i1 S;

j=0 j

P
< MO(1)P. (6)

Proof. Assume for simplicity thatv is one of the coordinate vectoeg. Then di A xe;) =
curl A - e; = B;. By the divergence theorem,

/ (Axe;)'ekda—/(Axe;)°ekda:ff B; dV. )
Sj+1 Sj Vi

Fori # k, e; x e, = +¢; (the remaining coordinate vector). Thus
/ A]dU—/A[dO' //de
Sj+1

®)

In this way we obtain all the componeritst k. The corresponding integral fot; is zero

because diA is zero. Anyway
< ‘ f f de‘. 9)
4

The consequence follows from our hypothesis tliatpossesses uniform cancellation.
Hereafter we will denote byd the normalized fieldB/®, and by« its vector potential
A/D.

/ Ado — Ado
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Recall that the integral of a functiofi in the planew - x = r with the area measurerd
is called the Radon transforRf (w, r) (the notation is not standard, but more convenient
for our purposes). For facts concerning the Radon transform we will follow £9].is in
fact defined in the projective spa®&; alternatively we may view functions iB® as even
functions inQ x R (since the planev - x = r is the same as the plarew - € = —r). Our
previous result obviously implies the following. O

Corollary 2.3. There exists a constat such that for anyw € €, for every partition(r;)
of (a, b) and for all time

N

> IRa(w, rjp1) — Ra(w, rj)|” < M. (10)

j=0
Now there is a space formed precisely by the functions satisfying this bound. Its definition
goes back to Wiener [10]; they were later studied by Young [11] whose results on Stieltjes
integration will be used later, and generalized by Orlicz and co-workers [12, 13]. A recent
unification of many of these results may be found in [14]. Functions satisfying this bound are
called functions of boundeg-variation. The supremum de,N:o |f(riz1) — fFpIP)YP
when taking all possible partitions is a norm in this Banach spate:, ). A closed
subspace of this is formed by all continuous functions of bourgledriation,CV?” (a, b),
which includes the space of functions satisfying a Holder condition of orderd” (a, b).
A deep result is that if1/p) + (1/q) > 1, for any f € CV”(a, b), g € V4(a, b) (or vice
versa), the integraﬂ’ f(s)dg(s) exists in the sense of Riemann—Stieltjes, and

b
/ f()dg(s)| < M| fllvrllglve. (11)

All this may be vastly generalized, but to our purposes it is enough to note that for every
componenty;, Ra; € L*(R2,CV’(a, b)). Hereafter we will denote by|eb| the Lebesgue
measure on the unit sphefe

Corollary 2.4. There exists a consta such that for any
F e LY, V(a, b))
with (1/p) + (1/¢q) > 1, and for all time

‘// FRBdlw|dr| < [[FllLy@ ve@p IRAlL>@.cV7 a,b))- (12)
QxR

Proof. It is enough to realize that for any componeBj, of B transversal tow,
RB, dr = +dR A, for some component ofl. For instance, fotv = e;, RB; dr = +dR Ay,
whene; x e, = t+e;. The component oB in the w-direction has zero Radon transform
by Stokes’ theorem.
This result is optimal in the sense that f@t/p) + (1/q) < 1, there exist functions

f € CVP(a,b), g € CVi(a,b) such thatfab f(s)dg(s) is divergent. These functions may
even be taken within the Holder spaa&%” (a, b), C¥4(a, b) [13]. We will denote byR,
the dual Radon transform (see [9]). Then we have the following. O

Corollary 2.5. When F belongs to a bounded set Irt(2, V4 (a, b)), with (1/p) + (1/g9) >
1, the value/[.,(R. F)3dV remains bounded for all time.
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Proof. This value coincides, except by a multiplicative constant, with the integral in the
previous corollary by the main duality theorem of Radon transforms (see [9]).

Thus we must analyse which kind of functions are the dual Radon transforms of
functions in LY(Q2, V4 (a, b)). Although they do not coincide with any classical space,
they contain some well known ones which will give us our theorems on the boundedness
of the field. O

3. Convergence of the magnetic field

Theorem 3.1If B possesses uniform cancellatighis bounded for all time in thél ~2(V)-
norm and the vector potential bounded in the” ~%(V)-norm.

Proof. We must show thatf2(V) is contained inR,LY(R2, V9 (a, b)), that isR;*H?(V) C
LY, V%(a,b)). Let us see first thaRL?(V) c L*(, HY(R)). This follows from the
fact that the three-dimensional Fourier transfaff (ws) is the one-dimensional Fourier
transform with respect te of the Radon transform (see [9])Fsf (ws) = FiRf (w, s).
Thus, by the Plancherel theorem,

2
/d|w|/ w dr:fd|w|/
Q R| OF Q R
= /d|w|/ |s}'1Rf(w,s)|2ds:/d|w|/ |sF3 f(ws)|? ds
Q R Q R

- C//I; \Faf () e = cf/;% | ()P . (13)

The ¢ accounts for the constant in passing from spherical to Cartesian coordinates. Hence
the L2(R®)-norm of f and the L2(2 x R) of (3Rf)/(dr) are equivalent. Sincé is
bounded andR f (w, —) vanishes outsidéa, b), the L?-norm of (dRf)/(dr) is equivalent
to the H'-norm of Rf.

It is known (see again [9]) thaR;! = yRA, where A stands for the Laplace
operator andy is a constant. Since\ takes H2(V) to L3(V) continuously, R! takes
H?(V) to L?(Q, HY(R)). In fact Rf vanishes outsidga, ). Any function within
H(a, b)) has a square-integrable derivative, hence integrable and therefore has bounded
variation. A fortiori it belongs toCV4(a, b), for anyq > 1. SinceQ has finite measure,
L%(Q2,CV4(a, b)) C LY, CVi(a, b)). All the immersions are continuous. Hence

’// G-ﬂdv‘ < MIGllzcry (14)
\%

which means thaB(¢) : + > 0 is bounded inH2(V). The result forA follows from the
inequality

IR 2
fl—f(w, s)| ds
ar

lall g1mey < 1Bl H-2m3)3 (15)

which is a consequence of the fact mentioned above [8] that ‘ctakes continuously
H'(R3)® into H3(R®)3, by considering the adjoint operator.

This theorem is emphatically not the best possible. What we must demar@ fer
merely thatR;1G = y(92/3r?) RG (which is another expression of the inverse) belongs to
LY(Q2, CV(a, b)®). Still, it will provide a partial answer to the question about the existence
of a limit. O
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Corollary 3.2. For every sequence, to, ...t, — oo, there exists a subsequengg) such
that 3(#;,) converges in the weak topology H 2(V), H?(V)).

Proof. It is a simple consequence of Alaoglu’s theorem on the weak compactness of the
unit ball of the dual space, and the fact that sid£& V) is separable, this weak topology
in the ball is metrizable.

Obviously the vector potentiale: converge in thes (H~1(V), H(V))-topology, but
still this is not very intuitive; for instance, we cannot guarantee pointwise convergence.
This, however, is true for the means af O

Theorem 3.3For every Borel measure in Q and every sequenag, o, .. .t, — oo, there
exists a subsequencsg, ) such that

/ Ra(w, r, t;,) du(w)
Q

converges at every point @, b).

Proof. It is a consequence of Helly’s selection theorem as applied to the $paeeb)
(see [12]). The functions

r—>/Ra(w,t,,)du('w)
Q

form a bounded set iV?(a, b), since u(2) < oo; hence, there exists a subsequence
pointwise convergent to a function o (a, b).

If we take asu the Dirac measure centred at a point, we would obtain pointwise
convergence oRa(wyo, t;,); by taking an atomic measure, we could obtain convergence of
Ra in any countable subset &f. This result may be generalized as follows. Since functions
in V”(a, b) are bounded, the product of two functions)¥ lies in V?. Hence, we may
obtain in the same fashion a convergent subsequen¢§ Giw, r, t))Ra(w, r, t;,) du(w)
for all r, providedG e LY(2, CV?(a, b), du)3. Note, however, that this does not imply
weak convergence in any sense Ré(z;,), since the subsequence dependsgoand .
Anyway the integral ofA in any plane has limits when— oo.

Finally, we will see that any of these limits is rather regular; they are the pointwise
limit of their Fourier series at every point. We shall use the notioii(hfr) convergence,
whose meaning may be found in [15]. O

Theorem 3.4Let F(x) be the limit of some subsequence of

/ G(w,r ty)Ra(w, r, t;,) du(w).
Q

Then the Fourier series df is (C, s) bounded for any € [—1, 0) such that—s < (1/p),
and(C, r) summable taF'(x) at every point for any > s. In particular, the Fourier series
of F' converges taF' at every point.

Proof. Let ((a,, b,)), be any sequence of disjoint intervals (@, ). Then

F(b,) — F(ay Yp 1\
Z% < (Z'F(bn) _F(an)|p) (ZW> (16)

n
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where p’ stands for the conjugate gf. The first factor is always bounded because
F € V?(a, b)®, and the second is boundedyif(s + 1) > 1, which amounts te-s < (1/p).
HenceF belongs to the space of the so-called functiong:6f!)-bounded variation, whose
Fourier series satisfy the above condition (see [16]). In particular this happerns=fdy
(functions of harmonic bounded variation [17]) whose Fourier series converge at every
point.

As an additional result, it is also true th#t may have only simple discontinuities
[16]. O

4. Conclusions

We have shown that when a magnetic field evolves under the ideal induction equation for
a fixed fluid velocity while keeping bounded a certain variation, the mean magnetic field
B and its vector potentiatkx have sequential limits when — oo for a weak topology.

This weak limit does not need to be unique, so that we cannot really speak of a limit field
B(c0). However, it offers some information on the asymptotic evolution of the field. Since
|ffv B@)dV| =1, B(c0) has integral 1 and cannot be 0. Hence, if the magnetic moment
tends to zero, the field also vanishes in the limit: one could think that the ups and downs
of the field may make for a small moment, but this does not happen unless the field itself
decreases. If the magnetic moment remains bounded, the field has limits: wheto in

the H~2 sense, whereas if the moment tends to infinity as it happens in the classical fast
dynamo models, so does the field at every open subsét ahd at most at the total moment
rate. It cannot happen that certain portions of the domain make for a large moment while
others remain below the mean. Also, several spatial means @hd pointwise to their
corresponding limits, and those are not too irregular. This shows how when well balanced
they tend to be the ups and downs of the field.
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